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1. INTRODUCTION

The Novel Resonator Program resulted from a growing interest in radial-flow,

high power chemical lasers. Because of this interest, a great deal of attention has

been focused upon developing resonator geometries which are capable of efficiently

extracting energy from the thin cylindrical sheath of active medium generated by the

radial flow nozzle array. Of particular importance is that the extracted power be

characterized by near diffraction-limited beam quality. Additional characteristics

must also be considered such as sensitivity to misalignment, susceptibility to

parasitics, mode medium effects, practicability of multiwavelength operation,

manufacturability of the optical components, and scalability to high power.

Over the past several years, a number of annular resonator concepts have emerged

that offer high power potential. Three such resonators that were conceived during

the ALOS program are HSURIA, Ring HSURIA, and the converging wave resonator. The

single axis resonator for annular devices (SARAD), as well as the unstable resonator

with self-imaging apertures, are configurations which have more recently been

conceived by AFWL. The ring resonator with intracavity focal line aperture (IFLA)

is a promising annular resonator concept presently being investigated by UTC.

U.T.R.C. has also investigated various injection locking schemes, multiple resonator

phased array, and master oscillator power amplifier (MOPA) configurations for annular

device applications.

By drawing on the analysis of these concepts seven resonator categories were

considered for the Novel Resonator Program. These were as follows:

1. Intracavity Spatial Filtering

2. Converging Wave Resonators

3. Self Imaging Resonators

4. Injection Locking

5. MOPA Configuration

6. Diffractive Cross Coupling

7. Multiple Beam Resonator Concept.



Based on investigations done by P&WA and U.T.R.C., injection locking was decided to

be the most promising candidate. With the concurrence of NRL/DARPA, this concept

was selected for further study.

The primary advantage of injection locking is the enhanced mode discrimination.

Theoretically, the frequency, phase, and mode properties of the high power annular

resonator are determined by the nature of the laser beam which is injected into

the annular resonator from a low-power, frequency-stable, mode selective master

oscillator.

(2)



2. ANALYSIS AND RESULTS

2.1 Baseline Configuration Definition

The baseline configuration, shown in Figure l,is a confocal asymmetric ring resonator

with a pair of W-axicons for beam compacting and an axial injection coupling hole in the

feedback portion of the ring. Most of the effort in this investigation has been devoted

to injection locked operation in which the undriven ring is capable of self-oscillation.

J This regime offers better power extraction than the regenerative amplification regime,

but is also more problematic due to stringent cavity length matching requirements and

the need to suppress backward wave oscillation.

The geometric analysis of the configuration shown in Figure 1 and its compacted

equivalent, shown in Figure 2, are detailed in Appendix A. The objectives of this an-

alysis are to provide a range of parameters for the code calculations. In particular,

expressions were derived relating the required injected power and the phase locking range

for injection control to the resonator cavity magnification M, and the diameter of the

injection coupler, D2.

Figure 3 shows the variation of required injected power, Poo normalized to the

self-oscillation power of the ring, Psc' with the ratio of the inner diameter of the

output coupler, Dc, to the diameter of the injected coupling hole, D . These curves

indicate that for

P /Posc < .01

m = Dc/D 2 > 5 for M=2

m > 3 for M=3.

The maximum value of D2 = D c/m is, thus, set by the abailable MO power. The

minimum value of D2 is established by the phase locking range, 61. If 61 is too

small, it will be difficult to match the cavity length of MO and ring to the desired

accuracy for efficient power extraction. The relationship between 61 and the

(3)
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resonator parameters, m and M, is given by equation 14 derived in Appendix A:

= -1 (1
1 m'TM 2 -l i

or approximately,

5 1/m1

A reasonable value for closed loop phase error is 6 = 0.1 rad, which gives a

maximum value of m = 10. Thus, this analysis indicates a range of interest of,

3 < m < 10, where m = D c/D2

and from Figure 3 10- 3 < P /P < l0- 2

with 0.1 6 < 0.35 rad.1

2.2 Optical Analysis - Compacted Ring Resonator

The initial optical analysis was done on the bare compacted equivalent of the

baseline configuration (see Figure 2). This approach was taken because the

rectangular SOQ Computer code was available and the annular code was still under

development.

Table I lists the physical characteristics of the resonator used for initial

analysis. This resonator was converged without an injection signal, and the mode

structure recorded at the location to be used for injection. The resonator was then

re-converged using the recorded mode structure as an injected signal. Figure 4

shows the intensity distribution of the field incident on the hole coupler without

injection. The results with injection are identical.

To investigate the effect of injection on the compacted equivalent ring

resonator, misalignment and astigmatism sensitivity studies were performed. The

results of the misalignment study are summarized in Figures 5 and 6. The baseline

and injected resonators were modeled with various levels of misalignment (tilt)

applied at an optic approximately half-way around the ring from the hole coupler.

Figure 5 shows the effect of tilt on bare resonator power coupling to be negligible

(7)



TABLE 1 PHYSICAL CHARACTERISTICS OF ANALYTICAL DESIGN

WAVELENGTH (SINGLE LINE) 3.8 MICRONS

MAGNIFICATION 3.0

CONVEX MIRROR RADIUS OF CURVATURE 100 CM

CONCAVE MIRROR RADIUS OF CURVATURE 300 CM

GEOMETRIC BEAM DIAMETER 10 CM

INJECTED BEAM DIAMETER 1.11 CM

RESONATOR LENGTH 1460 CM

EQUIVALENT FRESNEL NUMBER 4.5

COLLIMATED FRESNEL NUMBER 10.1

MIRROR REFLECTIVITY 0.99

MIRROR DISTORTION NONE

(8)
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for the injected case. A slight improvement in beam quality (Figure 6) is possible

for misalignment up to 2Q/D. Beyond this level, quality degradation becomes worse

for the injected case.

Figures 7, 8, and 9 summarize the results of an astigmatism sensitivity study.

During this study, several methods and levels of injection were modelled: A single

on-axis injection beam coupled into the field with a hole coupler l/M times the

feedback beam diameter, a grating (or splitter) coupling in an injection beam the

size and power of the feedback beam, and a lower power version of the grating injector

scheme. Figure 7 indicates that power coupling can be held constant for various

levels of astigmatism. The value of power coupling is set by the specific

injection technique. As shown in Figures 8 and 9, no appreciable gain or loss in

beam quality is attributable to any of the injection methods.

The addition of a simple uniform saturable gain in one leg of the resonator was

not informative. Resonator results were essentially identical for the baseline,

perturbed (astigmatism), and perturbed-with-injection cases.

In addition to these sensitivity studies, a vertical obscuration or strut was

added to the compact ring configuration to force the resonator to run with a two-

lobed mode structure. The presence of a strut significantly reduced output beam

quality and increased power coupling to nearly 97 percent. An optical "kernel" from

the baseline (no strut) resonator was injected in the geometric shadow of the strut.

The injected resonator showed a significant improvement in beam quality and power

coupling but did not return to values near the baseline case. This test represents

the most improvement in resonator performance due to injection control observed in

the compacted ring resonator.

The rate of improvement in power coupling and beam quality with injection signal

strength is shown in Figure 10. Full injection strength was taken to be the power

associated with that portion of the baseline, non-injected resonator. Figure 10

indicates half the quality improvement available occurs at less than 15 percent of

full injection power.

(12)
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A second resonator variation was run with various injection strengths. This

resonator was altered to have an equivalent Fresnel number of 4.0, theoretically a

poor design for mode discrimination. This resonator failed to converge without

injection, but did settle to a single solution in the presence of the injection hole.

Figure 11 indicates the rate of performance improvement with injection signal strength.

Again, the injected signal was taken from the center of the baseline case with no

struts and an equivalent Fresnel number of 4.5.

A review of these results for the equivalent compacted resonator indicates that

injection can improve beam quality in some circumstances. However, improvement back

to the unperturbed, aligned resonator results does not occur. Injection does, however,-

help maintain power coupling at the unperturbed value.

2.3 Optical Analysis - Annular Ring Resonator

The bare optical analysis was performed on the annular ring resonator shown in

Figure 12. This configuration is essentially the same as that shown in Figure 1 with

one exception. For comparison with the compacted resonator results, injection was

moved to the compacting W-axicon.

Total path length and optical element separations were identical to the compact

ring configuration used in previous analysis, thereby preserving the Fresnel number.

The injection signal used in the annular resonator study was taken from the center

of the unperturbed solution for the compact resonator. The annular resonator includes

w-axicon tip truncation which precludes the use of nearaxial information for the

unperturbed case.

The aligned annular resonator solution without injection resembles the compact

solution with a hole on axis in terms of output power coupling. As expected, the

mode structure draws away from the hole on axis (Figure 13). The introduction of an

injection signal reduces power coupling and improves beam quality assemtially to the

values for a compact resonator with no hole on axis (Figure 14.)

(17)
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Table 2 compares power coupling and beam quality for the aligned compact and

annular ring configurations. Two misaligned annular configurations are included.

These cases demonstrate the most significant performance improvement due to in-

jection control observed in the bare resonator analysis.

The history of misalignment cases leading to the two shown in Table 2 indicates

a much higher sensitivity for the annular resonator as compared to the equivalent

compact resonator. The computer model converged to a solution for the compact

resonator with as much as 75 microradians mirror misalignment. The annular resonator

would not converge with even 5 microradians of tilt unless it was injected with an

unperturbed solution. The two cases listed in Table 2 have 1 and 2 microradians

of tilt and show a significant degradation in beam quality for the non-injected

cases.

Loaded resonator analysis began after modifications were made to the multi-

wavelength code. The first resonator to be analyzed is the loaded equivalent to the

baseline configuration with w-axicons to create the annular segment and no injected

beam. The baseline case is necessarily first since it is the source of the injection

signal used in other cases.

Operating the loaded resonator code has proved to be time-consuming. The code

was still under development when loaded resonator analysis commenced. As a result,

the baseline configuration without injection has been impacted by code corrections

that were being made under the program responsible for developing the model. Faulty

computer tapes, used to record information from iteration to iteration, has also

contributed to delays. In spite of these problems, the baseline no-injection case

has been run. The power in the 20 transitions selected were driven to zero in 12

iterations. This suggests that either the baseline configuration needs to be

(22)
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changed in some way so that less power is coupled out or that there is a problem

in the code optics analysis, the kinetics package, or the integration of these

two.

2.4 Analysis of Multiline Injection Lockinp

The multiline injection locking analysis detailed in Appendices B-D consists

of (1) development of closed form expressions for saturated gain for multiline

cascade coupled transitions, (2) development of a stable resonator equivalent of

the injection controlled unstable ring, and (3) a perturbation analysis of the

model to determine the form of the output power and phase angle in the case of

multiline injection locking. The results are simple expressions for the phase

locking range and cavity length matching requirements for coupled and uncoupled

transitions. It is found that in the case of perfect spectral matching of MO to

ring resonator, the locking range is independent of the spectral line, whether it

be coupled via the cascade or not. These results are derived in Appendix C.

There, it is shown that the locking range is given by,

61 = M -)Po/POsc

for all transitions to first order in the perturbations. For a matched system,

P /Posc is independent of wavelength which implies that 61 is the same to first

order for all transitions.

The requirement for matching the cavity lengths of the MO and the ring is

shown in detail in Appendix C. There it is shown that injection locking on all

lines requires,

2n /X (1R - L) < 61 (MODULO 2r)

(24)



This will, in general, require that fIR - 1) < 61 /27A, where A is the mean

wavelength of the spectrum. To see the requirement for equal cavity length, consider

the case in which the two lengths are matched to an integral number of wavelengths,

n, at the mean wavelength X, with residual phase error.

In this case,

27(iR - 1 = 27nX

The optical phase an an adjacent wavelength A - A-AA is then,

= 2r/ (IR - 1L) = 27rnX :2Trn + 27n LX/X

In order for this line to be locked, we require,

< 6 or 27nAX/), < 61

For representative values AX/A = 0.1, 6 = 0.1, we get

InI <1/27

This inequality can only be satisfied for n=o. That is, for a multiline injection

locked configuration, it is necessary to match the MO and ring resonator cavity

lengths absolutely to an accuracy better than 6 11

2.5 Reverse Wave Effects

The stable resonator model was employed to determine the relative strength of

the reverse wave in various portions of the system as functions of system parameters

for two cases of interest. This analysis is detailed in Appendix D and the

important results are shown in Figure 15.

The two cases of interest corresponded to a free-running ring with a retro-reflector

(25)
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and an injection locked ring with no retro-reflector. The quantities BL and bL for

the two cases are the ratios of reverse wave power to MO power at the MO output

coupler.

The results shown in Figure 15 indicate that forward wave injection is, in general,

a more effective means of suppressing backward wave oscillation than the use of a

retro-reflector. The abscissa in this graph, Rs, is the effective reflectivity of any

sources of backscatter in the optics, medium or target, if applicable.

The results indicate that it is necessary to limit Rs to l0
-4 (40 dB) or better

in order to guarantee that the power reflected back into the MO is less than .01

of Pot the MO output.

2.6 Code Development

Beam injection at any optic was added to the bare rectangular SOQ code. This

new option allowed the equivalent compacted ring resonator to be analyzed. To

analyze the annular ring resonator, the simple w-axicon model and an annular propa-

gation algorithm were necessary. These models were developed, incorporated into the

rectangular SOQ, and checked out under another program.

The bare resonator code modifications specific to the injection locking concept

were applied to a loaded resonator code Oeveloped under another program). This

code contains the necessary HF kinetics and multi-line capability to model a high

energy version of the resonator being studied.

(27)



3.0 CONCLUSIONS AND RECOMENDATIONS

3.1 Conclusions

or the equivalent compacted ring resonator, beam injection can help maintain

bare resonator power coupling at the unperturbed value. For small misalignments,

injection improves bare beam quality, but it does not improve quality degradation

due to astigmatism.

For the annular ring resonator, beam injection maintains both bare resonator

power coupling and beam quality at the unperturbed values for very small misalign-

ments. And, as expected, this resonator is much more sensitive to misalignment

than its equivalent compacted resonator. Additionally, the reverse wave analysis

has shown the unstable ring/linear stable MO injection configuration to offer

satisfactory reverse wave suppression.

3.2 Recommendations

Based on bare resonator analyses injection locking shows promise. To determine

its potential, loaded resonator analyses for high-power devices must be performed.

Mode discrimination, possible parasitics, sensitivity to misalignment, and scale-

ability to high power are potential problems that need in-depth investigation.

Additionally, the technical issues associated with cavity length equa±ization to

less than X; matching of the MO and HEL spectra; and the stability, mode matching

and power requirements for the MO need to be addressed experimentally so the real

hardware requirements can be established.

(28)
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[ APPENDIX A

INJECTION CONTROLLED OPTICAL CONFIGURATION

4

I. GEOMETRIC OPTICS ANALYSIS

The object of the analysis is to develop equations for selecting

parameter values and layout for computer code calculations. Also,

to develop a compacted equivalent for the annular ring resonator.

Assuming that:

D = Outer diameter of annular gain region
b

D = Inner diameter of annular gain region. a

S= Length of annular gain region

R2 ,R1 = Confocal cavity radii of curvature
4

D2 = Injected beam diameter for axial injection

D = Inner diameter of hole couplerc

D2/M = Inner diameter of injected beam

2d= Db - D

X1, Z2, Z3, Z4, 5, £7 = Length of ring resonator portions

as shown on Figure I

The compacted equivalent in the absence of the injection coupling

hole is a confocal asymmetric ring: Using the notation of Freiberg,et.

al.1

L2 = 11 + Z2
° +

L3 = £3 + £4 + L5 + Z6

M = R2/R1  Ll - I (R2-R1 )

2a - Dc

1. Freiberg, et. al., IEEE J. Quant. Electr. QE-10,2, (1974)1

(29)



then,

2 2 2
Dc /4 (R2 -R, ) (1)

NReq = RiR 2 (R2 -R1 ) + 2R2 L2 + 2R 1 L 31

2 2
D c(M -1)C

8A ML1 + M L2 + L 3

MD = D2 + 2d = D2 + Db - Dc d + b a

As the coupling hole diameter is increased, with fixed gain

medium geometry and cavity magnification, the equivalent Fresnel number

increases.

2 2
(D2 + 2d) (M - 1) (2)

eq 8X M MLI + M L2 + L 31

II. GEOMETRIC MODE MATCHING

The geometric mode of the ring resonator has a uniform intensity

distribution in the collinated portion of the compacted ring. The

conjecture is that the injected intensity should match the circulating

intensity for a self consistent solution above threshold.

In the diagram below, where P2, P1 are the output and input powers

for the compacted annular gain medium and Pi is the injected power and

all intensity distributions are uniform;

(30)



Employing a homogeneous gain saturation model gives,

= e-(P 2-P1)/Psa (3)

G, Go = saturated and small signal power gains.

P sa= saturation power

Equalizing intens!ties at the injection port,
2 2 2
M D c- D2  (4)

~2 D2 (1 -

and for purely geometric ouput coupling,

2 2
D c- D2  (5)

P, = P0 + P2 M2 D _2 2

solving for P1 in terms of P0 gives,

D2D22 2 D22 2

Pa= M~ ~ M -2 M )PO (6)

and

2 2 2
M MD c- D2  PO (7)

P2 D2 Z(1- 1/, 2-)

let DIc D2 - m

(31)



I -I

then,

2 2

P, + P r

22M 2
(0 (8)

and,

(!2M-P 
M P2 2

P2 - M ' M (9)

also,

P2  2 - (P2 -Pl)/Psat

but

2 mM- 2 2
P2-P= (M- I) 1\- ) P 0  (m M-I) P0

M -I

and,

2 2
2 - (m M -1) P0/PsatM =G 0 e

2 2
(m M-i) P0 = (in G o -21nM) Psat-

(In Go - 21riM)
PO _-7 -7 -sat (10) ,

AP

(m M -1)

(.3
(32) j :

SI.



!

where AP is the power extracted from the gain medium. Note that

this is the same power that would be extracted if there were no

injection coupling. The total ouput power is just P0 + AP.

m M -1 osc.

An interesting result is that if ln Go < 21nM and the ring resonator

is below threshold, then there is no solution to equation (lO)for P0 .

Physically this implies that there is no uniform intensity solution

for below threshold regenerative amplification in the axial coupled

ring unstable resonator.

Equation (11)yields a compact equation for the required injected power

in terms of the self-oscillation power of the device P =AP, the resonator
osc

confocal magnification M, and the ratio of the output coupling diameter

to injection coupling diameter m = D c/D2 .

Posc (12)

mM -1

An estimate for the injection locking phase range in radians can be made

by analogy with the result for a stable ring with a dielectric coupler of

reflectivity R. In the case under study the injected power enters via a

second coupler with R=I. The equation is,

6 l-r M (13)

r osc



where, r = .R ; pursuing the analogy for an unstable ring r =

in the geometric limit

6 1_ /M2 PO (M2_1) p
6 =4i- 'M = PM-i

/M2  OSC OSC

When this result is combined with equation (12),then,

6 2- (14)

mM -1

That is, if the injected power is chosen to match the free running intensity,

the injection locking phase range will be a function only of the magnifications

M and m.

Note that there are certain interesting values for m given by

m = Mn n = 0,1,2,3...

n is the number of round trips required for the injected beam to fill the

output coupler inner diameter. For these special cases,

P -i

P M 2n+2 1
osc

M -1

(34)
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APPENDIX B

IMPORTANT GAIN RELATIONSHIPS FOR THREE LEVEL CASCADE GAIN MEDIUM

In this section the three line gain saturation expressions for a

cascading set of levels is derived. Velocity effects and the spatial

dependence of the populations are neglected and the solutions are limited

to steady state conditions. The results are then applied to multi-line

power extraction in regenerative amplifiers.

The rate equations for the populations of the three livels N1 , N2 , N 3

and the ground state No are:

(l.a) dN1
= RI0+ N2w21 + w2 1(N2 -N1 ) - Wj0 (Nj-N 0 ) - NIwlOdt

(l.b) dN2

dt = R2 0 + N 3 .,2 + W32 (N3 - N2 ) - N2w 21 - W 2 1 (N2-NI)

(1.c) dN3
= R3 - N 3w 32 - W 32 (N3 - N 2)

and N = N o + N1 + N2 + N 3 = total density of molecules.

Note that additional pumping and relaxation terms can be added to equations

(1) without changing the basic results of the analysis.

In the steady state dN1  - dN2  . dN3 = 0 and,

dt dt dt

(2.a) R1 + N2 w21 + W21 (N2 - NI) - W10 (2N1 + N2 + N2 - N) - Nlwl0 = 0

(2.b) R2 + N3w32 + W32 (N3 - N2 ) - N2UZ - W21 (N2 - N1 ) 
= 0

(2.c) R 3 - N3W 32 - W32 (N3 - N2 ) - 0

Solving for W2 1(N2-Nl), Wj0 (Nj-N0 ), W32 (N3-N2) which are proportional to gain per
unit length.
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(tl0+2W1 0+ W2 1) N1 + (WI0 -W2 1-w21 ) N2 + (W1 0 ) N 3  R1 + W1 0N

(-W2 1) N1 + (w21 + W21 + W32 ) N2 + (- W3 2 - W 32 ) N 3 = R2

(0) N1 + (- W 3 2 ) N2 + (W 3 2 + W 3 2 ) N3 =R3

u,0 + 2WI0 + W21 WI0 - (W2 1 + W2 1) W1 0

A = -W21 W 32 + (W2 1 + W2 1) -(-32 + W32 )

0 -1432 (32 + W32 )

= 32 + W 32 ) I lO W21 + 2f",21 W1 0 + 10 W 2 1 + 3W1 0 W21j + wlow21w32

(RI + WI0 N) W10 - (W21 + W21) W10

AI- R2  W32 + (121 + W21) -(W32 + W 32 )

R3 -W32 (32 + W32)

and:

A1= -(R2 + R3) WI0 (w32 + 2W32 ) + (w32 + W32)(RI + R2 + R3 + W1 0 N)

-R3 WI0 G21 + W2 1)

= (w21 + W21)Q,32 + W32 )(R + NW 10 ) - WI0 (w32 + 2N32 )(R2 + R 3)

- R 3 WIO (w21 + W21)

where R - R 1 + R2 + R 3

Similarly,

A2= (wI0 + 2WI0)(w32 + W 32 )(R2 + R3) - R3 WI0 W2 1

+ W21 (R + NW10)(t32+ W32)

and:

A3- (jIo + 2NI0 )(u)2 1 + W2 1)R3 + W21 W 32 (R+NWI0 )

+ R3 Wl0 W21 + W 32 (who + 2WIO)(R 2 + R 3)

(36).,



now,

A3A2- IW2lR3 - W32 (R2 + R3)]j [wj0 + 2W10 J + jW1o R3 - (RI + R2 +3 R )W32JW21

+ 14113 - w3 2 NJ W1 0 W2 1

and,

A2-Al= (woI + 2WI0 )(G32 + W32)(R2 + R 3) - R3WI0 W')

+ W2 1 (R+NW10 )(w32 + W32 ) - (W21 + W2 1 )L 32 + W32 )(R+NWI 0 )

" W1 0 G32 + 2W32 )(R2 + R3) + R3WI0 Gw21 + W2 )

a] so,

AI-A 0 = I2RIw 2 1w 3 2 + 2 2 1W3'(R 2 + R3 ) + w10 W3 2 (R 2 + R 3 )

4 wo1 0 a I l R 3  - "1 0 ', 2l c-3 2 N I

+ 13 (R1 + R2 + R3 ) ,32 + 1 OR3  w 10 w3Y] W21

+ 12 (R 1 + R2 + R3 ) W21 + 2 (R2 + R3) wj0 - w10 1 NJ W32

+ 14 (R1 + R2 + R3) - wIoNI W2 1W32

2R _ i2R2C+RR+R )W4R 9 W
4R +R -3- -N 3 -NJ _2R 2(R+R )

w__ + w!m  W w +wo~10 21 3221 2'10 21 2 10 21 32

32z [ 10D W 21 W10 Wf211 W]OW21L32

121, 12 (Understood that all intensities are normalized
W.o2 sat to saturation values)

- -I= 13 ; W I1
W32 WAD

then,

IR R +~ 14~i+V~-3R - +N]1 +( + 2CR 2+Rj) -N 4R N1~ ~ ~! -N +2 + L-. _. -N 12 _N 0- 2
Nj-N° Ii + 1)11 + 211 + 12 + 31112 + 111213

(37)



similarly

-_ ]~R+3 (1+13)~ +3 (R ZR)_Ni 111 [4(R2+RI)_Ni 1113
N2-I = F21 l, W32 W21 W I w21

(I + 13) jil + 21I + 12 + 311121 + 111213

and

(1+211)+ 1 a i + L -FI
2 N3 I w ( 2  (+i1)+I - _1 1  + _w3 1112

(I + I1)(1 + 12)(l + 13) + (1+213) 1112

Making the following identifications

(1) Uncoupled small signal gain per unit length of transition 1-.0 alone.

(12= 13=0)

9 1 [2(RI+R 2+R 3) + R2 +R 3 + R__ -N]

0 L W10 w21 w32  J

(2) gR I R2+R -Ao w021 wlO

(3) go (32 WeI

Ther

gl(Ii,I2,I3) = + g 02 3 0 11213
(1 + IOU +-12)(1 + 13)+ (1+213)III 2

as the coupled saturated gain on transition 1-0

and [ 1 r 13
2(,92(i+I3) + go2+ go I,+  g2_ go- 0o 111 3

go( 1,I 2 ,I 3) = g1 0 0-o1o0 2 1

(1 +Ii)(l + 12)(l + 13)+ (l + 213)1112

also
93(i+ i) +  go3+g2 I o u u#+g~

g 3 (1 ,I ,I ) = 0 1  2 1112

(l+Il) (i+12) (i+I3)+ (1+213) 112

(38)



I
The above expressions must be integrated over the length of the amplifying

I-

medium in order to obtain the power gain used in the injection locking equations.

Special Cases

(a) g1 (1,o,o) = 10

g2 (o,1 2 'o) ff 1 + 12 Single line gain expressions

g 3(oo,13) = 1 + 13

+ 1391 921

(b) g 1 (II,12 ,o)= go + 0 g 1

(1+I1) (1+12) +1112

1 +1+ 1 3 1g j two line gain

g 13 expressions
gl (iI,,1,3)= y

(iI) (l+I3) i+I1  (i+I1) (1+13)

9+ Ig'-2?2-g~l1,gl1 (0,12,13)=  0o 0 0o2og 0 21

(l+12) (l+I3)+ (1+213)llI 2

A special case involving a pair of lines that is integrable in closed form

series to develop the general results.

Suspose II=O, 12, 1300

2
then, g2. go2

1+12

3+ go 3+g21 2

(1+12)(l+13)

3 2
90 + go01

1+13 (1+12)(1+13)

(39)
it .
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I. INTEGRATED POWER GAIN EXPRESSIONS FOR CASCADING GAIN MEDIA

Consider the case of two cascading transitions A and B for which the

gain per unit length expressions are,

0 A
lA 1 + P A Pd (1)

gB g A P I dP
g g-0  + 0oA =B (2)
B + PB (I+PA) (l+PB) PB dZ

Power extraction and power gain can be analyzed by examining a single

pass through the gain medium.

l A, l B 
P 2A, P2B,

( +P) dPA = gA dZ
A 7

dPB B
(I + PA = g dZ + dP

Integration from o- yields,

In (Pi2!) + P -P +p P B
PI 2B lB 1A 2A m gok

ln( P 2 A) + PA k
P(IA P2A7 A 0

(40) "



but

GA = lA .power gain for line A

A P 1

GB = lB =power gain for line B

so,

Bn G + lB(G -i) - PlA(GA- 1) in GogB

An G ATo(G -1) - in GA =gAk

Power extracted on line A, AP A = (G A-l)Pl1A

AP B = (G B i)P 1B

so,

in G + AP AP' B gB =
BB A go onG

in G +ALP = 1 nA gA
A A 0 0

and

--( APB AP A (3)
BE Be

o- AP A (4)
GA A~

Equation (3) shows that the operating gain on line B is directly related

(coupled) to that on line B.

-AP AP G 0GC -AP'
i.e. C e A *

B B G A

These relationships will be used in the analysis of regenerative amplification,

injection locking, and return wave suppression.

(41)



A
APA = go Z nG A

AP= go + InG + AP
B 0 B A

If, as in most applications of interest GA and GB are approximately equal and

determined by the loss per pass then the cascade has resulted in an additional

extracted power of APA in line B.

(42)



II. EXPRESSIONS FOR POWER GAIN WITH TWO-W4A! PROPAGATION

Ii 12

At any point in the medium the net field is

I(z) = 1(z) + I+(z)

The homogeneously saturating gain /cm is,

g(z) 90=
l+(I +1+)/1

for simplicity normalize all intensities to Is

g(z)= go

1+I +I-

1 dl~ + 90  - - dI

I + dz l+i++i- I-dz

where

2

1-(0) =12- 1- I M9

+ 11

(43)



in general

1 dI + iIR

I dz Idz

so that,

I 1 I1 12 Il 12 c (constant)

and

G =G = G (power gain is symetric)

1 dI + (I+- -

1+ dz

RI+ + LI +
I+ +d 1+ g0

but

I- 
C

I+

so that,

RI + dI+
+ dI + c 1+2 g g0dz

After integration from o k+

i Jia+) + (2+~ 11+) C (g +
Similar result for I gives pair of equations,

lmG + 12 11 --C 1 1) g=

InCG + 12 +- II+-C (i + =

(44)



-- These equations can be replaced by a single equation,

lnG + (G-l)(11 +11 ) g09k

or

(+ A-)
G =G 0e -~ A

(45)



APPENDIX C

MULTILINE INJECTION LOCKING ANALYSIS

The figure below shows the layout for the stable ring resonator/injection

locking analysis.

Note that lower case g refers to amplitude gain integrated over the gain

medium length; this should not be confused with gain per unit length of pre-

vious analyses.

Specifically Present Symbol Previous Symbol

power gain g2 , 2  G, G

amplitude gain g9 g0  G, Go

gain/length a, ao g, go

Referring to the figure,mirrors M1 and M2 define the master oscillator

cavity which is driven by a gain medium with amplitude gain gL' L refers

to linear cavity. The ring resonator is defined by M 3 , M5 , M6 , M 7 , M 8 and

amplitude gain gR" M is a retro mirror for enhancement of the forward

wave; M4 is a retro mirror with effective reflectivity r to represent a small
s

amount of backscatter in the system that acts as the source of the return

wave.

M7  M6

M +
aM8 e-

4.-3f~uW
M2 Z +

44M3\(ti,tc)

SON M_5
tL 6

M4(46

. . , . ... . . . ..6 )



Definition of terms

~+ b+p *~+ d+, *+, -wav
a b , c , d , f e -forward waveamplitudes

a b , c , d , f-, e - backward wave amplitudes

8 - output wave amplitude

gL' gR - operating amplitude gains

tL = Master oscillator output transmittance (M2)

rL = Master oscillator output reflectance (M2 )

tR = Ring resonator output transmittance (M8 )

rR = Ring resonator output reflectance (M8 )

2I
k = Wave vector =

r = Backscatter reflectance (M4)

Nonreciprocal t t = Transmittance of M 3 for injected beam
coupling i
of injection hole tc  = Transmittance of M 3 for backward wave

We have the following set of simultaneous equations for the fields

~+ 2 i2kZ 1
a [ L gLrLe -gLtL be ik 1 ()

ikk% + (2)
b t ge a-rLb

-c ek(X3+Xs). i-+tct t grek(26+k3+5)c+(3)

backscatter

= ikk 2 - (4)

r ~~t e ik( 3+t5) + rr2e 2 ik(95+k) - +ttb+eik2= C+ (5)
rcgRtRet( -Rrce c5

retro mirror

These equations apply to each of the lines of the multiline output.

(47)



FORWARD WAVE SOLUTIONS

If r =o and there is no backscatter, then equation (3) givess

-- [l-rct- geik(£3+Z5) ] = 0

The only solution consistent with the other equations is

c =b =o.

This is obvious if the retro-mirror is deleted from the system. It can also

be shown in the more general case.

The equations for c = b = o are,

2 12k£1

tgLe a ib

ik = +

-+ t £2 b+
C lrcgRtReik(£3+£5)

This represents operation of the system with complete suppression of the

return wave.

Let P = MO output power =b

Po = Ring output power = r' R2 c+I2
outRR

2
but, -+ 2 = 2

CI lrcgR t Reik(t3+£5) 2

and,
M gR t Po

out" 1- cgRtR eik(£3+£5) 2

(48)



r2 2t2 P
RRi o

(1rctO 24 g Sin2 k(.Zq+kZ,)
C 2

for simplicity let k3+Z5 = ZR = round trip length of ring

2kl= Z L = round trip length of Mo.

The phase shift between the output field 8 and the input b is,

r9t Sin ki
4= k(k2+k3)+ tan

1  c rtR R Ro

so that for the power output and phase of the driven ring output,

'out - (1-r tg) 2 +4r tc Sin2 kkR 0o(6
c RR c cR8R2

r C Rgt RSin kZ
P k(X2+k3) + tan- (7)

lrct~gR cos kkiR

and for unperturbed operation of the MO

-ikkL

L r L

In the absence of anomalous dispersion g2 is real and

kZ L -2nnf n integer.

(49)



This defines the longitudinal mode wavevectors of the MO. A more complete

treatment generalizes this result to include the transverse mode structure

also. For this analysis the effects of transverse mode wavevector shifts

will be neglected. The conclusion, that the longitudinal modes of the

ring resonator must be matched to those of the MO, also applies to the

transverse modes. Substituting the condition kt L=2rn into (6) and (7),

R~L

p u =) 7RR i 2(Tn P 8
out r t 2 + 4r t SinlPo (8)

[ Sc R Sin(27rr1

27n (Z2+Z 3) + tan- kL (9)

1 -r t gcos J2r:-
ctRgR  L

Pout will have a global maximum for all wavelengths (i.e. all values

of n) if Z R =f XL

r2 2t2
RP RRi (10)

out max (l-r ct RgR 2

From this point on gR refers to the operating gain at the global maximum

for the particular line in question.

The output power of the regenerative amplifier in the injection locked

regime differs slightly from that of the free-running oscillator P0 5 .

This motivates the following perturbation analysis; first the single-line

uncoupled transition is treated.The results are then extended to the two-

line cascade coupled case.

(50)
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III FORWARD WAVE PERTURBATION ANALYSIS

111.1 Single Wave Analysis

The single line perturbation analysis is simplified by writing the operating

gain in terms of the self-oscillating power, P o . of the ring.

g = e (Posc - AP)/ 2 ,Posc= AP gives r tg 1 (10)R r: tR cR R

let ~ R =T £+ M 2AiAk =kAQ=

i

then

P out P +AP r2 g t, o 11

(1-rct RgR) + 4r t R i2

let rtg c t -g A =e (Posc- Al')!2

1+ (P - AP)
2 osc

to first order in the perturbations

R R 1 P

P0+A= 2 + 4Sin 2 6 (1-A)
A2

but 2A +AP - Posc =increase in extracted power above self oscillation.

r2g2t P
P 0 + Pose + 2A 2R- 26

A +4(l-A)Sin 7-

(51)



Consider the region in which the ring can be considered injection locked

to the MO. Here 6<<l and 2A + P « <P o

P

R~ osc

A2 R i 0o 6)

r22Posc

2 t' P0

ctR osc

and we can write,

P P + AP
out 0

.2 2 p
-~~ p p + i o

0 osc r c tR Posc

defining locking phase angle

x. r t Poc R osc

then,

P out 2: P 4 osc + 2 6.

which is valid for 16<6 91'

When 161>6 kself oscillation of the ring resonator ensues and the driven power

decreases. In this regime

Driven output 222

P P
out 40i6 1

r2t2  P

r t Sin 6c R 4gi

(52)



= -62 /4Sin' 6/2 osc

note that at

6 6 2, P =p

2. out osc

Driven power decreases rapidly for 6>6 In the limit as 6-7

r
2t

2

P =6 2 /RP - Ri
out k/4 Posc rzt o 0

c R

and the coherent power gain is essentially unity.

The phase angle can be treated by the same perturbation approach. Neglecting

the linear phase term 27rn kg+-rj
P L

rcg tR Sin 6 1

P(6) = Tan-
1  r cgR tR S 6

1- 8gR R Cos 6]

In the locking region,
62

cos 6 = 1 - - Sin 6=6
2

rcg t = 46- 62

and

0(6) =Tan- ________

62 7

In this approximation 0(0) T- for 6<<6
-£

and 0(6) n/2 when 6=6

Outside the locking region

00)a Tn-' Sin 6

$(6) - Tan -I  l - cos 6

(53)



= cot

so that

(6) = 7+ for 6>6
22

1T

6 IT 6
01

111.2 CASCADE COUPLED LINES ANALYSIS

Consider a pair of cascade coupled lines, A and B. According to the

results above,

(a) gRA gA eAPA/2

o -(AP B - APA )/2(b) gRB =  RB

Assume MO output powers P and P and that rR, r , t ti, apply to both
oA oB Oc R

A and B.

The analysis for line A is indentical to the prededing analysis for the single

line case, since it is uncoupled from line B. For line B, then,

B A
rctR g = e o(Posc -

B ) - (Posc P

1-A i + (PoBc-AP) - (P -APA) --Boac Boac A

Bor 2AB = (AP B-Po 8c) -
2AA

(54)J



In the injection locked regime,

r2g92 t2p
AP B+ AP' = R RB i oB 6 k BAt

oB~~L B AA 2 B B
B B

but

AP = P B+2A + 2A
B osc B A

and

P B +2A +2A igRBgi t~oB
oB osc B A =Az+ 6zB3 B

In the spirit of the single line analysis P >> P + 2A + 2A
osc oB B A

and

B R_________

-s AZ + SZ
OSCB B

ArRt ioB B2
B r c tR PB

osc

B =P +

out oB B

2t22 P
B Ri oA rot P2 [Rt21A6P. + P Ri 2oBZ -

oB~~~i rs ~t Brt
cR RR P

osc osc

then,

PB P + B +2 2 6 +2 2 6
out ~oB +Pc +2 LB B + U~ 5 A

which is valid for 161 < 6 for both lines.
* I

(55)



If the MO spectrum is matched to that of the ring resonator

PoA P oB and 6
p B LA LB

osc osc

furthermore

6A/68 = kA/kB = 1

so,

P+P = P B J62-6Jt262
out oB osc

A +pA + 2 J62 -62
out oA osc

As a result of the cascade coupling, line B has double the sensitivity

to change in 6 that line A has in the output power.

Outside the locking range r = 1 and

B r2 ti oB 62k/4 pB

P B- . o osc
out r2t2  4 Sin26R Sin 26/2

cR 2

which is the same result obtained in the single line analysis. This holds

true for the behavior of the phase angle outside the locking range; i.e. it

is identical to that for the single line case.

Within the locking range, the phase angle for line B can be obtained by

perturbation of
(6 Tan- I Ir cg tr R Sin 6 1

l-rcg t cos 6B

rcgtR B

and

00g) Tan-I B

which is the identical result as in the single line case.
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The results of this analysis can be summarized by stating that the

effect of coupling between transitions alters the power vs tuning curve

from that of the isolated lines. To first order in the injected signal

however there is no change in the phase angle vs tuning curve.

(57)



APPENDIX D

RETURN WAVE EFFECTS IN IN.TECTTON LOIXINQ

Field equations for the injection controlled ring are:

-+2 i k- - i k Y 1
a+I g Lr Le ikL L - b e L/2

tL9Leik, L/ + -~ 
(2)

W ~ik .R+2z 6 )f+

backscatter

b te ik2 (4)
c

te .R ..+ 2 2 12k (Z 5 + k 4)

retro mirror

for simplicity assume all MO power is injected into ring ti'ml, also assume

that backward wave coupling is weak.

i.e. r -1 t <<J.
c c

then (3) and (5) become

- ikR ~ik (2 + 2126) -+
c jt RgRe -1 t tRgRr. e c(6

.+ ite R ;~ ikki2  2 ik(L+2 9'6)-(7
I81RtR e 11+j + rRe 7

(58)j



7-7

If c is regarded as a perturbation resulting from r and c is computed

for two cases:

I. Undriven Ring with Retro-Mirror

In this case b+ 0 and

iki R  ik(kR+2k 6 ) +
c jgRtRe -1 1 - tctRgRr e c

+ WRI- 2 i2k(P 5+Z4 ) _R-9 tR r~e c

then c g t R rthec c cRgRrs c

c 2
rR c

In terms of absolute magnitude

Sc tct RRrs (8)

c rR

In the weak return wave limit gRtR I and

ct = ,JTRa7--- c s (9)
"1-l R R

- ratio of return to forward wave power

Then the suppression of the return wave in the undriver ring resonator is

independent of the phasing of the retro-mirror!

The power incident on the MO due to this backward wave is just,

b - 2 . t + 1 2

t 2 Posc OFT T Pos c (10)
OR c - -a

r2 2 R R
RgR

(59)



The ratio of return to forward power for the MO In this case can be

written as,

aR = F T Posc
2RI 2 cR Po

IT I cT posc\ (11)

- rTR T TR

Neglecting any suppression of the return wave due to the injected signal.

This isolates the effectiveness of the retro-mirror in the suppression of

the backward wave. Equation (11) can be rewritten in terms of the forward

wave injection locking angle 6i,

L  = T Tc 2

Re R (12)

Next, consider the other regime in which the retro-reflective is not

employed, and only the injected beam is relied upon to suppress the backward

wave.

In this case equations (6) and (7) become,

Rik(R + 2 c (13)- It RgR e tkRl tRgR r se c(3

Wk ikt

- ItR!Re -1 + e 0 (14)

Solvine for c-2 eives.

.1

(60)



[

The ratio of return to forward wave ring power in this case

is defined as BR9

-2 T R -+ 2  T TR P
C - S-±-C4 c Ps osc

R T PC11+J % P

c TRs osc (15)
R % P0

Note the comparison of 8 and 6' equations 8 and 15 for the two regimes.
R R

The ratio of return to forward power for the MO in this case can be

written as,

_2 T 2R

lb I

2 2

B = = cRsc

TR R Posc)

2
T cR (16)

6 9,
.4

Note the comparison of 8 and 8L (eq. (10) and (12) )for the two
L L

regimes. In particular,

S RR L  (17)

L T
C

It appears that if adequate suppression can be achieved with a suppression

mirror i.e. 0L<.OI for example; then injection will provide even better

suppression for most cases of interest without the use of a retro-reflector.
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i.e. let

RR= 0.5 (outcoupling of ring)

T = 0. 1 (backward wave outcoupling)C

then,
2

= 2.5 8
L L

and if 8 .01

=2.5 x 10
- 4

Note that all of the previous results are only valid when 8 and 8
L L

are small compared to unity.

The analysis of return wave suppression with a combination of injection

control and a retro-reflector can be performed via equations (13) and (14).

This is an important endeavor which has not been attempted as yet. It

is apparent that the combined use of injection control and retro-reflector

places some constraints on the phasing of the retro-reflected beam and

the injected beam. A separate control of mirror M9 in the ring resonator

layout may be reouired in order to imDrove on the return wave sunnression

achievable bv iniection control alone.

(62)j
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